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Objective of peridynamics

Some limitations of the standard theory of solid mechanics

It is incompatible with the essential physical nature of particles
and cracks.

Can’t apply the PDEs directly.
Can’t easily include long-range interactions.

What the peridynamic theory seeks to do

- To predict the mechanics of continuous and discontinuous media with
mathematical consistency.

- Everything should emerge from the same continuum model.
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Cracks vs. continua:
Why this issue is important

- Typical approaches require some fix at the discretized level.
- LEFM adds extra laws that tell a crack what to do.
- These laws are known only in idealized cases.
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The reality of fracture may be too complex to represent in the form

a= f(K)
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Original concept (2000):
Continuum as a network of bonds

e Any point x interacts directly with other points within a finite
distance o0 called the “horizon.” Equation of motion:

p(x)u(x,t) = Lf(u(x’, t) —u(x,t),x —x) dVy + b(x, 1)
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How damage and fracture are modeled

e Bonds can break irreversibly according to some criterion.

e Broken bonds carry no force.

Bond force density |
Bond breakage

L

Bond extension
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Bond breakage forms cracks “autonomously”
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When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.
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Energy balance for an advancing crack

If the work required to break the bond & is wy(&), then the energy
release rate is found by summing this work per unit crack area (J.
Foster):
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Bond elongation

There is also a version of the J-integral that applies in this theory.
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- Integral is replaced by a finite sum: resulting method is meshless and
Lagrangian.

EMU numerical method

py(x,t) = / f(x',x,t) dVy + b(x,1)
H

l

pyr = f(xp,xi,t) AV; + bl
keH
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Dynamic fracture in a hard steel plate

* Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
* Mode-Il loading at notch tips results in mode-| cracks at 70deg angle.
« 3D EMU model reproduces the crack angle.

Experiment
/

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and
Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644.
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Early high speed photograph by Harold Edgerton

(MIT collection)
EMU model of a balloon penetrated http://mit.edu/6.933/www/Fall2000/edgerton/edgerton.ppt

by a fragment
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plitting and fracture mode change in composites

» Distribution of fiber directions between plies strongly influences the way cracks grow.

Typical crack growth in a notched laminate
(photo courtesy Boeing)

EMU simulations for different layups
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Limitations of the original theory

- Pair interactions imply Poisson ratio = 1/4.
- Can’t use traditional stress—-strain models.
- Can’t enforce plastic incompressibility.

New approach

-Retain idea of bond forces.
- But bond forces depend on the collective deformation of the family.
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Peridynamics basics:
Horizon and family

e Any point X interacts directly with other points within a finite
distance 0 called the “horizon.”

e The material within a distance 0 of x is called the “family” of x,

H.
e B
(5horizon

H =family of x
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Why we need states

We want to express the idea that the strain energy density at x depends
collectively on the deformation of the family of x.

Deformation y

A
Undeformed family of x Deformed family of x
Standard: Peridynamic:
0
W (—y) W(Y)
ox
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Definition of a state

e A state is a function on H.

e A vector state A maps each bond §& € 'H to a vector written
A(g).

e Scalar states: A(£) is scalar valued.

e Double states map pairs of bonds to second order tensors:

A€ Q).

E=x—x

Bonds are defined in the reference configuration.
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State fields

e States can depend on position (in the reference configuration)
and time.

Alx, t](§)

Alx, /()

Families of two points x; and x;
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Dot product of two states

e Suppose A and B are vector states.

e Define a scalar called the dot product of A and B by

/A £) dvg.

e In components,

e Norm of a vector state:

IA[l = VAeA

frame 18
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} Dot product of two states, ctd.

e Suppose a and b are scalar states.

deb— /H al€)b(E) AV

e Point product is a scalar state:

(ab){€) = a(€)b(§)
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Functions of states,
Frechet derivatives

o Let W(A) be a scalar valued function of a vector state.

e How much does W change if we change A? Suppose there is a
vector state W such that

V(A +a)="V(A)+ Vaea+ofllal)

for any vector state a. \
e U, (A) is the Fréchet derivative of U at A. 1295 esp WL CReter

Concept is similar to the gradient in R?, e.g.,

f(x+0x) = f(x) + [x(x) - 0x + o([0x])

except that A lives in an infinite dimensional space.

frame 20 @
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} Frechet derivative examples: 1

e Find the Frechet derivative of UV(A) = A e A:
U(A+a)=(A+a)e(A+a)

~ [(a) +a() - (A©) +a(6) ave

:A-AH/A(@@@ Ve + O(|[all)
— U(A) +2A e a+ O(|[al])

Therefore
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} Frechet derivative examples: 2

e Find the Frechet derivative of U(A) = [ |A(&)] dV:

MA+@:/ﬁya+a@MW

—/w TAE) + alg) dve

- [ 1A M Vg
/;A 1+— —|2>+...> dVe

A 2l
v+ | NG

Therefore

=2

Vo= A
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} Frechet derivative examples: 3

e Find the Frechet derivative of W(A) = [A(&) - A(BE) dVg

where (3 is a constant:

(A +a) - / (A(E) +ale)) - (A(BE) + alBe)) dVe

VAT [ A0 a6 Vo) + [ AFE) - ale) dVe+..
VA + [ (5AE) + ABE) -ale) dVe+ .

Therefore

Ta(€) = B °A(BE) + A(BE).
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Frechet derivative examples: 4

e Find the Frechet derivative of W(A) = ¢ - A(§,) where c is a

constant vector and &, € H is a given bond:
VA +a) — [ e (A6 +ale)aE - &) v
— WA+ [ Mg - e ale) av;

where A is the Dirac delta function. Therefore

Wa(g) = Al —&)c.
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} Frechet derivative examples: 5

e Find the Frechet derivative of W(A) = [ f(A(&)) dVe where
f(v) is a scalar-valued function of a vector

V(A +a) = /f )) dVe
/ (F(A(E)) + grad F(A(E)) - ale)) dVe
_ WA+ / orad f(A(E)) - a(t) dVe

Therefore

Ua(€) = grad f(A(E)).

frame 25
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- Now we have the tools in place to talk
about elastic materials

Strain energy at x depends collectively on the deformation of the family of x.

Deformation y

s

Standard: Peridynamic:

w (%) W(Y)

Undeformed family of x Deformed family of x

Y is the deformation state defined by

X[X7 t] <X/ - X> - Y<X/7 t) - Y<X7 t)
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Deformation states can contain
a lot of kinematical complexity

,.7:77
=" N
7N

¢ Y (&)

Undeformed bonds connected to x Deformed bonds connected to x

O =

Compare this with standard theory in which small spheres are mapped

into ellipsoids Sandia
@ National
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orce state is the work conjugate to the
deformation state

e Suppose we perturb the deformed bond Y (&) by a virtual dis-
placement €. The resulting change in W (x) is

AW = T(E) - ¢
where T(&) is a vector.

e The “force state” T is the work conjugate to Y:

W—I(X—LI@%X@d%

e T is the Frechet derivative of W(Y) — analogous to a stress
tensor.

Deformed family of x

Displace just one bond &
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} Potential energy and its first variation

e Total potential energy in B:

0 = / (W(Y[) - bx) - y(x)) dVa
B

e [ake first variation.

00 = [ (Wy[x] @ dY x| — b(x) - 0y(x)) dVx

/0
L[] [ it - oyts) oyt dvie i -yt s
A

e Require 0® = 0 for all variations 0y. Euler-Lagrange equation is

/H<WY[X’] (x — X/> _ WY[X} <X/ X)) dVy — b(x) = 0

Sandia
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Equilibrium equation

e Define the force state by
T = Wy.

e Just showed that stationary potential energy implies the following
equilibrium equation

| (@bt~ x) ~ Tx - x)) e+ blx) =0
H

for all x € B.
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e Equilibrium equation is

/H (I[X] (x' —x) — T[x'|(x — x’)) AV + b(x) = 0.

Bond force

e Write this as: T[ ]< ) > T[X’] <X . X’>
f(x',x) dVy +b(x) =0 = X/f(x’x
[ i i =0 ,

e where the bond force is defined by

f(x',x) = Tx|(x — x) — T|x'[{x —x)

e Bond force is antisymmetric:
f(x,x") = —f(x',x)

e In general the vector f(x’, x) is not parallel to the deformed bond

Y(x' — ).
e f has dimensions of force/volume®. Sandia
@ National
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Principle of virtual work

e Equilibrium equation is
/ (I[X] (x' —x) — T[x[{x — X'>> dVy +b(x) = 0.
H
e Multiply by a virtual displacement field w and integrate:

L (i ) <) ) ) ) i Vit [ b)) b =0

[ [ - (i) i it [ byt =0

B

e If we define W to be the deformation state associated with w

Wix](x' — x) = w(x') — w(x)

then the PVW is

/I[X] e Wix| dVy — / b(x) - w(x) dVx = 0.
b b Compare classical PVYW

J(o-Vw—b-w)dV =0
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Peridynamic equation of motion

e Equilibrium equation:
/ f(x',x) dVy +b(x) = 0.
H

e where

f(x',x) = Tix|(x — x) — T[x'](x — x')

e Now use d'Alembert’s principle to get the equation of motion:

p(xX)y(x,t) = /Hf(xl,x,t) dVy + b(x,t)

Sandia
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Balance of linear momentum

e Total linear momentum in the body:

P = /py dVy.
B

e [hen

P=/pydvx P
B

:/ [/f(x’,x,t) dV}éer] dVy
B B
\ From equation of motion

e Recall f(x',x,t) = —f(x,x’,t), therefore

P:/deX
B

e Rate of change of total momentum = total applied force.

Sandia
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Constitutive modeling

e A constitutive model relates the force state at a point x to the
deformation state and any other variables:

I:i(X7X,67X7t7...>

e

Rate dependence Explicit time dependence

Temperature (e.g., ageing)

Heterogeneity

e Simple material: A
T =T(Y,x)

Sandia
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Angular momentum balance

e Define the total angular momentum in the body by

A:/yXpy'dVX.
B

which says there are no “hidden” dofs that have angular momen-
tum.

e Shorten the notation:
t = Tlx, t]{x — x), =T, t]{(x —x).
e Then

Az/yXpSdeX
B

:/Byx [L(t—t’)dvlerb] AVi

N

From equation of motion
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Angular momentum balance:
Nonpolar materials

>
|

yx(t—t’)dVX/dVXJr/yxdeX
B

T
——

(y—y’)xthX/dVXJr/ByxdeX

:—/B/HX@><1<£>dvgdvx+/6y><bdvx

Suppose the constitutive model is nonpolar:

/H Y (€) x T(€) dVi = 0

for all Y. Then
A= /y x b dVi
B

which says there are no “hidden” moments.
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Nonpolar materials

e Nonpolarity:

/H Y (&) x T(Y)(€) dVe =0 VY

implies the global balance of angular momentum.

e Converse can be proved too (global balance of angular momentum
implies material is nonpolar).

e We will adopt nonpolarity as a constitutive restriction.

e “No net moment on a point due to its own force state.”

012

— Y (£)

«® | ou ‘Ar’x T(g)

frame 38
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Ordinary and nonordinary

e Any force state can be decomposed into parts that are parallel
and orthogonal to the deformed bonds:

T=T,+T1,
where
T (&) = (T(E) - M(&))M(E)
Y ()
ME = e
o If
T, -0 VY

then the material is ordinary, otherwise nonordinary.
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Elastic materials:
objectivity implies nonpolarity

e Objectivity: for any proper orthogonal tensor Q,
W(QY) = W(Y).

l.e., energy doesn't change if you rigidly rotate the family after
deforming it.

e Can show that any objective, elastic material is nonpolar:

/H Y (£) x Wy (€) dVe = 0.

Details: see Silling, " Linearized theory of peridynamic states,” J.

Elast. (2010).

e Result is important because usually objectivity is much easier to
determine than nonpolarity directly.

©= Do/
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Energy balance

e Recall that for an elastic material, since T = Wy,
WY +0Y)=W(Y)+TedY +o(|[0Y]])
therefore

W=TeY : .
e — Compare stress power: W =o - F.

W(Xv t) - /HI[Xv t] <X/ - X> ' (Y(X/7 t) — Y(Xa t)) AV

Sandia
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Energy balance, ctd.

e For more general materials, the first law of thermodynamics is
c=TeY+h+r

where e=internal energy density, h=net heat transport rate to x
per unit volume, r = heat source rate.

e This applies to any heat transport law, e.g.
h = KV?%0 Fourier’s law, local

or

h = /BK(X’ —x)(0(x',t) — 0(x,t)) dVxr  nonlocal

Sandia
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Free energy and 2"d law of thermodynamics

(joint work with Rich Lehoucq, thanks also to Eliot Fried)

e Since we're now dealing with temperature, have to include it in
the internal energy:

£(Y,0).
e Now try to find T from £. Define the free energy by
W=¢e—10n
where n=entropy.
e Thus | |
W= —6n—0on.

e Hence from 1st law
V=TeY+h+r—0n—0n.
e Second law (Clausius inequality):

On > h +r.

Sandia
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Free energy and the force state

e From last two equations,

ToY—én—¢>O.

e Assume ) = (Y, ). Therefore
TeY —6n— (1y @ Y + )46 > 0.

e Group terms:
(T —py) oY — (1 +19)0 > 0.

e Since Y and € can (in principle) be varied independently, conclude
(from Coleman-Noll argument) that

T=4vy and 7= —y.

e Special case: if ¥ is independent of 6, get an elastic material with

W = .
Sandia
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Rate dependent materials

e |f we allow rate dependence in the model,

Y =v(Y,Y,0)

can show that the force state can be decomposed into equilibrium
and dissipative parts:

T =T%Y,0) + T"(Y,Y,0)

where _
T =y and T eY > 0.

Energy dissipation
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} Material modeling:
Bond-based materials

e The simplest assumption is that all the bonds are independent.
Y) - [ Uel)© Ve, ele) = 1Y(6) - ¢

Y(§)
Y (£)l

TE) =¢'(ef€), &M, M=
e Equation of motion simplifies to
pix,t) = [ <) dV + bl 1)
H

f(x',x) = (¢'(e(€). &) + ¢'(e(€). —€))M

Deformed bond Y (& /
X
f(X/, Vv
Bond &

X

National
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Material modeling:
Bond-based materials, ctd.

e The body is a network of independent, nonlinear springs.
e Material response is described by a graph of bond force vs. bond extension.

e If the material is isotropic, the Poisson ratio = 1/4 (!).

A

f(x', %)
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Material modeling:
Bond-based materials, ctd.

e Special case: fiber reinforced composite lamina.

e Bonds in the fiber direction are stiffer than the others.

f(x',x) = (c1 + cA(zh — 29))e(x’ — x)M

BOI’VX

To » X Fibers—

v
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Material modeling:
Bond-pair materials

e Suppose every bond £ has a friend n = x(&). The material responds to the
deformation of pairs of bonds.

/w n),§:m) dVg

where 1) is a function of four vectors:

Y(p,qa,§,m).
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Material modeling:
Bond-pair materials, ctd.

e Fréchet derivative yields

T(€) = ¢p(Y(€), Y(x(£)),& x(€))+va (Y {x '(£), Y (&), x '(£).€)J "

where

J = )det orad X‘

Sandia
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Material modeling:
Bond-pair materials, ctd.

e Specific case:

m (&)= unit vector L to Y (&)

Sandia
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Material modeling:
Bond-pair materials, ctd.

Fascinating facts:
e This material does not respond at all to homogeneous deformation.

e |t provides a consistent way to model bending of a one-dimensional beam.

e The standard model for a beam involves introducing a different theory from
the continuum theory.

Sandia
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Using a classical stress-strain material
model in peridynamics

e Suppose we are given a model for the Piola stress: o (F), where F = Vy.

e Want to use this somehow to get a force state. Define an approximate F by

Fo| [ sy osa k!

where w is a given influence function and K is the shape tensor-

K—/Hg@e@sdvg

Void: w =0

\ Homogeneous deformation:

Can show F = F even near boundaries.

Sandia
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Using a classical stress-strain material
model in peridynamics, ctd.

® Set )
T{) =w)o(F)K & V¢
e Can show that if o = 9W/OF, then T = Wy.

e Can also show that if the Cauchy stress tensor is symmetric, i.e.,

o(F)F!
det F

=7 where T =

then the peridynamic material is nonpolar:

/H Y(€) x T(€) dVe =0 VY.

Q@@ D= zfj/\@
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Fluids

e Define a nonlocal dilatation based on the mean bond extension:

where
z(&) =&, m=wzezx,  e(&) =[Y(&)|—xz(&).

e Writing this out in detail:
3
0= | w(OIE(Y©)] - I€]) dve

e Constitutive model: W (¥).

Sandia
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} Fluids, ctd.

e Nonlocal dilatation:

) = [ w(©l€1(1X6)] - 1€]) v

e Fréchet derivative of dilatation: observe

IY 4 5Y) = / w(E)[EI(X(€) + 0Y.(€)) — |€]) dVe

=2 [ wtolel (1) + e ox(9) - lel) av

o)+ 2 [ wlelel (Fan-0X(€)) dv

3
Vy = Ewazl\/[ where M = |§|

M(&) is the deformed bond direction

Sandia
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Fluids, ctd.

e Constitutive model is W (4).

e Now can write down the force state: chain rule implies

. dW dW 3waxM
T(Y) = Wy(9(Y) = 00y = o (v) 22,

e Nonlocal pressure = —dW /d4.

e Bond forces are parallel to the deformed bonds (material is ordinary).

Sandia
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Material modeling:
Discrete particles

e The family of x could be either continuous or a collection of point
masses or other objects.

Family of x
— ——
\.
X
— —
\
:mZAX—Xi

A = 3D Dirac delta function

Sandia
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Material modeling:
Discrete particles, ctd.

e Consider a set of atoms that interact through an N—body po-

tential:

U(Yl? Y2, - -- ayN)J
Vi,...,yn = deformed positions, x;,...,xy = reference posi-
tions.

e This can be represented exactly as a peridynamic body.

Y1
[ )

® Vs

Yo

Sandia
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Material modeling:
Discrete particles, ctd.

Define a peridynamic body by:

~

W(Y,x) = Alx—x0)U(Y{x1—Xp), Y (Xo—Xp), ..., Y{XNy—X0)),
p(x) = Z A(x — x;) M,

X1
MCQ
Y1 Y (x; — xq)
e Y3
Yo®

Sandia
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Material modeling:
Discrete particles, ctd.

e After evaluating the Frechet derivative T, find

TIx](€) = Alx - xo)

oU
p dyi

e Equation of motion reduces to

e Have represented a multibody potential exactly within a contin-

uum model.

U
c‘?yi’

i=1,...,N

A(f — (xi — Xo))

/Fz' = 0U/dy;

Yi e

~

Yo

Ys

frame 61
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Linearization of a material model

e Small displacement field u superposed on a (possibly) large deformation y':

TY'+U)=T(XY") +KeU-+o|[U]))

where
Y'x' —x) = y(x) —y(x)
U(x' —X> u(x’) — u(x)
Ty (Y’)

K(&,¢) is a double state (tensor valued function of two bonds):

/K{C ¢) dVe

Sandia
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Linearization of an elastic material model

o If i is elastic, A
K=Ty(Y") = Wyy(Y’)

l.e., K is the second Fréchet derivative of W.

e Can show that for a linearized elastic material,
K(C,&) =K' (£.¢) V&

e Converse is also true.

e K is called the modulus state, similar to 4th order elasticity tensor.

Sandia
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}Equation of motion for a linearized material

o If y¥ is equilibrated,
pistx) = [ (Lb(p —x) — Tipl(x — p) dVf + b
~ [ ()« U P — ) — (Kip| « Up)iix — p)) ¥ + blx)
~ [ [ (e - x.a - x)(u(@) ~ u(x) - Kipl(x — p.a p)(u(a) - u(p))) dVy dV; + bix)
- [ e a)(ul@) - ux) Vi + bix)

Clx,q) = / (KIx](p—x, q—x)—KIp|(xp,q—p)+Klq (x—q, p—a)) dV,
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Equation of motion for a linearized material

e Equation of motion:

pii(x) = / Ci(x, q)(u(q) — u(x)) dVy + b(x)
where

C(x,q) = / (K[x|{p—x, q—x)—K[p|(x—p, 9—p)+K|q](x—q, p—q)) dV},

e Similar structure to linear bond-based equation of motion but C has different
symmetry:

C(q,x) = C'(x,q) ...state-based
C(q,x) = C(x,q) and C(x,q)=C'(x,q) ...bond-based

/

Effective horizon is 20.

Sandia
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Stability of a jump perturbation

e Write the linearized equation of motion as:

pu(x) = /C(x, q)u(q) dVy — P(x)u(x) + b(x)

where P is the symmetric tensor defined by
Pix) — [ Cxa)dVy— [ [Kxp-xa-x) vy av,

e Consider a small superposed displacement field u containing a jump across a

surface I
e Define [[u]] =u™ —u".
u A
u+
f—[[u]]
u
/ [

X
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Stability of a jump perturbation, ctd.

e Write the equation of motion on each side of the jump (b = 0):

it = [ Cixt qula) dV - Pix

piv = [ Coxapula) vy - Pl ju-

e C and P are continuous. Subtract.

2

plla]] - [[u]] = —P|[[u]]

e The jump grows if [[4]] - [[u]] > 0. This can happen if P has a negative
eigenvalue.

[u]], Unstable

_<able

»

L
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e Let the eigenvalues of P(x) be denoted { P, P, Ps} and define the stability

index by

{P17P27P3}

o If Z(x) < 0 then a crack can nucleate at x.

= min

Z(x)

e 7(x) depends only on the material properties at x.
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Materials with a damage variable

e Assume there is a scalar damage state ¢ such that
Y =9(Y,0,9) and Q > 0. ¥—— Damage is irreversible.
e Repeat C-N argument to find that we still have (for h = r = 0)

T=vy and n=—1y

but now also have

and

¢ Energy dissipation
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Damage evolution laws

e ¢(£) is the damage in bond & (at some x), determined by a
damage evolution law:

o=DY,Y,...)

o If T(£) = 0 whenever ¢(§) = 1, the material has strong damage
dependence (otherwise weak).
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Damage evolution laws
Example: bond breakage

e Define the bond extension state by
e(€) = [Y{&)] - [€].

e Suppose
D(&) = H(ey(§), es)

where H=Heaviside step function and

ep(§) = max (§).

t

Damage in bond & jumps from 0 to 1 when its elongation exceeds
the critical elongation e,

frame 71
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Damage in a constitutive model:
have to be consistent with nonpolarity

e Cannot in general do the following with a nonordinary material
model TV:

T(€) = (1 — o(€))TE)

because the resulting model may fail to be nonpolar.

0
| TI (&)
! § |
Four typical bonds in a Breaking a bond results in a net moment -
nonordinary material No longer nonpolar
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Damage in a constitutive model:
strong damage

e Suppose we have an elastic material with strain energy function

W = W%e). Then

T =Wy =WM, M=

|1

e Define a material by

V(Y ¢) = W((L - ge).

e Then
T=(1-¢T

e Each bond has its force reduced by 1 — ¢(§).

e ) is still objective so model is still nonpolar.
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Damage in a constitutive model:
separable damage

e Start with W = W%(Y). Then
T = WY
e Define a material by

WY, p) = Do)WY

where

e Find
T = &(¢)T"

e All the bond forces are multiplied by the same ®(¢).

Sandia
National
frame 74 Laboratories



Changing the length scale in a material model

e Suppose we want to change the horizon from 9y to 0;. Require
the rescaled energy to be the same as the original W, if the
deformation is homogeneous.

e [ he rescaled material model is
Wi(Y) = Wy(E)

where E is a state defined by Original, 0y
E(€) - 2Y(8
e Can show the force state scales according to
) = (2) mym
dg Rescaled. 01
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Changing the length scale
also changes the time scale

- Removing the small length scale also removes the high frequencies that
characterize that length scale.

51>50 — W1 < Wy

[
»

Wave number

Wolr~""~"~""""""74 ]
0 ! Original

> |

O 1

£ |

g i

&  wy b---- i Scaled up

H- 1
: 01
Dispersion curves Horizons
-
00

-
01
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Peridynamic stress tensor

In any peridynamic body, we can define a tensor field v such that:

e T he force per unit area at x through a plane with normal n is
s =v(x)n
e The peridynamic equation of motion can be written as

pu=divv+Db

vn

divv(x) = / f(x',x) dVy S
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Peridynamic stress tensor, ctd.

e The peridynamic stress tensor is given by

i) = [ [ [ wre? (sl 2 m)em) d dy o,

where § is the unit sphere and €2 is solid angle.

e v sums up the forces in bonds that go through x.

X —zIm
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Convergence of peridynamics
to the standard theory

Suppose the deformation is twice continuously differentiable. If
the horizon is small, the deformation state is well approximated

by
Y () = (Vy)
SO we can write
W(Y) ~ W.(Vy)

and it can be proven that

oW,
OVy

so v is basically a Piola-Kirchhoff stress tensor in a classical hy-
perelastic solid.

V=
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